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Abstract

Schrödinger investigated entanglement in two-particle state vectors by
assuming measurement, finding out if the nearby particle is in a given state
vector ψ1 or not. Without interaction with the distant particle, just on account
of the entanglement, the distant particle is steered into a certain state vector.
In Schrödinger’s finite-dimensional case thus any distant-particle state vector
can be reached. This theory was extended to infinite-dimensional spaces by
the author. The present paper completes the extension by throwing light on the
fine structure of steering.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Db, 03.65.Ud

1. Introduction

When in 1935 Einstein et al launched their revolutionary EPR paradox [1], many deep-thinking
foundationally-minded physicists followed suit. Among them were Furry [2] and Schrödinger
[3, 4]. The latter author introduced the now widely used concept of entanglement, but also
that of disentanglement and of steering or distant steering [5]. Schrödinger’s approach and
indignation can be seen in his words [3] p 556: “It is rather discomforting that the theory should
allow a system to be steered or piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it”. This is made even more clear in his next paper [4],
p 446: “ . . . in general a sophisticated experimenter can, by a suitable device which does not
involve measuring non-commuting variables, produce a non-vanishing probability of driving
the system into any state he chooses”. He had two-particle pure states with non-singular
reduced density operators, and finite-dimensional state spaces of particles in mind. (This will
be obvious after the detailed study in this paper.)

Distant steering in the case of two-particle state vectors that have reduced density operators
with infinite-dimensional ranges was studied by the present author [6, 7]. The present paper
is actually a completion of the former study with insight into the fine structure of steering.
Wiseman et al extended steering to mixed two-particle states [8].
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This study focusses on two-particle state vectors that have infinite-dimensional ranges of
reduced density operators. (The theory is general, but the fine structure studied does not show
up in the trivial, finite-dimensional case.)

2. The distant state

It is well known that one of the basic quantum-mechanical relations is the so-called trace rule,
which expresses the probability p(P, ρ) of occurrence of a quantum event (projector) P in a
quantum state (density operator) ρ by the simple formula p(P, ρ) = tr(Pρ). ‘Occurrence’ is
defined by measurement, but it is an astonishing quantum-mechanical fact that this notion has
a ‘two-dimensional multitude’:

(i) One can take any observable (Hermitian operator) A of which P is an eigenprojector
corresponding to an (arbitrary) eigenvalue a, i.e., an operator the spectral form of which is
A = aP +P ⊥AP ⊥ where P ⊥ ≡ 1−P (and the second term does not have the eigenvalue
a). If in the measurement of A the result a is obtained, then one says that P has occurred.

(ii) The observable specified in (i) can be measured in whatever way: ideally (the textbook
case), when the Lüders formula [9] gives the change of state, in more general non-
demolition measurement (older synonyms: repeatable measurement, or measurement of
the first kind), in measurement in which the result is not preserved (non-repeatable or
second-kind measurement).

It is not widely known that if one has a bipartite system in any correlated state (density
operator) ρ12, i.e., when ρ12 �= ρ1 ⊗ ρ2, where the tensor factors are the reduced density
operators, then, if a first-subsystem event P1 occurs (in the sense defined in the preceding
passages with the two multitudes of varieties), then the second subsystem ipso facto, i.e.,
without any interaction between the measuring instrument and the subsystem, makes transition
from the subsystem state (reduced density operator) ρ2 ≡ tr1ρ12 to the following state (density
operator) in H2:

p−1 tr1(ρ12P1), (1a)

where

p ≡ tr12(P1ρ12) (1b)

is the probability of the occurrence of P1 in the state ρ12. We write under the partial trace P1

instead of P1 ⊗ I2, where I2 is the identity operator in H2. (A proof of (1a) and (1b) is given
in [10], subsection 6.B.)

We need two steps of confining ourselves to special cases from relation (1a) to reach
Schrödinger’s steering. We want to do this in the antilinear representation of bipartite state
vectors (vectors of norm one) [7]. (The indices 1, 2 and 12 show in which space the entity is.)

3. The antilinear representation

There is an isomorphism from the tensor product H1 ⊗ H2, where the factors are complex
separable (finite or countably infinite-dimensional) Hilbert spaces (state spaces of the
subsystems) to antilinear Hilbert–Schmidt operators Aa that map H1 into H2, determined
by the partial scalar product

∀ |�〉12 → Aa : (2a)
∀ |ψ〉1 : (Aa|ψ〉1)2 ≡ 〈ψ |1|�〉12, (2b)

where 〈ψ |1|�〉12 is the partial scalar product over subsystem 1.
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Each antilinear operator Aa defined by (2b) determines its adjoint A
†
a , which maps H2

into H1. The adjoint is determined via the relation

∀ |ψ〉1, |φ〉2 : (Aa|ψ〉1, |φ〉2)2 = (|ψ〉1, A
†
a|φ〉2

)∗
1, (3)

where the brackets stand for scalar products, which are antilinear in the first factor, and the
asterisk denotes complex conjugation.

Relation (2b) also implies tr
(
A

†
aAa

)
< ∞. This is the relation that makes the antilinear

operators Aa and A
†
a Hilbert–Schmidt ones.

4. Two steps of special cases

Now we take the first step toward taking a special case of (1a) and (1b). By Pχi
we denote the

projector onto the one-dimensional subspace spanned by the unit vector χi , and i = 1, 2, 12
keeps track of the Hilbert space to which the entity belongs (even if it is superfluous, it is
useful for transparency). Naturally, Pχi

ψi = χi(χi, ψi)i, i = 1, 2, 12.

Theorem 1. If one has any bipartite state vector �12, i.e., ρ12 ≡ P�12 , and one goes over to
the antilinear representation Aa of �12, the occurrence of any first-subsystem event P1 brings
about the following second-subsystem state:

p−1[AaP1A
†
a

]
2, (4a)

where

p ≡ (�12, P1�12)12 (4b)

is the probability of the event P1 in the state �12.

Proof. As to the antilinear representation, we are going to utilize (2b) and (3), and the fact that
numbers undergo complex conjugation when taken to the left from an antilinear operator. Let
{φn

2 : ∀ n} be a complete orthonormal basis in H2, and let {ψk
1 : ∀ k} be a complete orthonormal

basis in R(P1), the topological closure of the range of P1: P1 = ∑
k Pψk

1
. Then(

φn
2 ,

[
tr1

(
P�12P1

)]
2φ

n′
2

)
2 =

∑
k

(
ψk

1 φn
2 , P�12ψ

k
1 φn′

2

)
12 =

∑
k

(
ψk

1 φn
2 ,�12

(
�12, ψ

k
1 φn′

2

)
12

)
12

=
∑

k

(
ψk

1 φn′
2 ,�12

)∗
12

(
φn

2 , Aaψ
k
1

)
2

=
∑

k

(
φn′

2 , Aaψ
k
1

)∗
2

(
φn

2 , Aaψ
k
1

)
2 =

∑
k

(
A†

aφ
n′
2 , ψk

1

)
1

(
φn

2 , Aaψ
k
1

)
2

=
∑

k

(
ψk

1 , A†
aφ

n′
2

)∗
1

(
φn

2 , Aaψ
k
1

)
2 =

(
φn

2 ,

[
Aa

∑
k

Pψk
1

[
A†

aφ
n′
2

]
1

]
2

)
2

= (
φn

2 ,
[
AaP1

[
A†

aφ
n′
2

]
1

]
2

)
2 = (

φn
2 ,

[
AaP1A

†
a

]
2φ

n′
2

)
2. �

The second step toward taking a special case of (4a), (4b) is confining ourselves to
elementary first-subsystem events (ray projectors) P1 ≡ Pψ1 , where ψ1 is an arbitrary state
vector.

Theorem 2. If an elementary event Pψ1 occurs on the first subsystem in a state vector �12 (or
Aa), then the second subsystem finds itself in the state described by the state vector

Aaψ1/‖Aaψ1‖, (5a)

3
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and the probability of the occurrence of Pψ1 is

p = ‖Aaψ1‖2. (5b)

Proof. As to the claimed probability (5b), from (4b) one has

p = tr12
(
P�12Pψ1

)
.

Introducing complete orthonormal bases
{
ψk

1 : ∀ k;ψk=1
1 ≡ ψ1

}
and

{
φn

2 : ∀ n
}
, one obtains

p =
∑

n

(
ψ1φ

n
2 , P�12ψ1φ

n
2

)
12.

Applying the projector, and taking out one scalar product from the other, one further has

p =
∑

n

(
�12, ψ1φ

n
2

)
12

(
ψ1φ

n
2 ,�12

)
12 =

∑
n

(
ψ1φ

n
2 ,�12

)∗
12

(
φn

2 , Aaψ1
)

2

=
∑

n

(
φn

2 , Aaψ1
)∗

2

(
φn

2 , Aaψ1
)

2 = ‖Aaψ1‖2.

To derive claim (5a), we start with (4a), and utilize the above basis in H2:(
φn

2 , p−1[AaPψ1A
†
a

]
2φ

n′
2

)
2 = (

φn
2 ,

[
p−1/2Aaψ1

]
2

(
ψ1, [p−1/2A†

aφ
n′
2 ]1

)
1

)
2

= (
ψ1,

[
p−1/2A†

aφ
n′
2

]
1

)∗
1

(
φn

2 ,
[
p−1/2Aaψ1

]
2

)
2

= ([
p−1/2Aaψ1

]
2, φ

n′
2

)
2

(
φn

2 ,
[
p−1/2Aaψ1

]
2

)
2

= (
φn

2 ,
[
p−1/2Aaψ1

]
2

(
[p−1/2Aaψ1]2, φ

n′
2

)
2

)
= (

φn
2 , P[p−1/2Aaψ1]2φ

n′
2

)
2. �

One should note that after the second equality the scalar product is complex conjugated
because before the first equality, Aa is seen to act after the projector, hence also on the numbers
that come out as a result of the projection. In contrast, if we read the next to last expression
one step backward, the scalar product is extracted without complex conjugation though it is to
the right of Aa . The reason is that Aa acts in H1, and the scalar product (a number) appears in
H2 after the action of Aa .Schrödinger’s steering is defined for the occurrence of an arbitrary
elementary first-subsystem event Pψ1 in an arbitrary bipartite state vector �12. As is shown
in theorem 2, this boils down to mapping H1 into H2 by Aa (the antilinear representative
of �12).

5. Polar factorization

To bring out the full power of the antilinear representation, one should perform the two polar
factorizations of Aa [11]:

Aa = Uaρ
1/2
1 , (6a)

Aa = ρ
1/2
2 UaQ1, (6b)

where ρi ≡ trjP�12 , i, j = 1, 2, i �= j, is the ith subsystem state (reduced density operator),
and Ua is an antilinear unitary operator mapping the topologically closed range R(ρ1) onto
the topologically closed range R(ρ2) (these subspaces are always equally dimensional), and,
finally, Q1 is the range projector of ρ1.

The operator Ua is called the correlation operator. It is the only precise mathematical
entity expressing the quantum correlations inherent in a bipartite state (known to the author).

4
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Remark 1. As is seen in (6b), Schrödinger’s steering maps H1 into R
(
ρ

1/2
2

)
. Actually, it

is a surjection, i.e., an ‘onto’ map [6]. This is, of course, non-trivial only in the case of
infinite-dimensional ranges (of ρi, i = 1, 2), when one should have in mind the known proper
inclusion relations

R(ρ) ⊂ R(ρ1/2) ⊂ R(ρ) (7)

valid for any density operator with infinite-dimensional range.

6. The largest probability of steering

We proceed by analyzing (5a), (5b) to gain detailed insight into Schrödinger’s steering.

Theorem 3. (A) Two first-subsystem state vectors ψ1 and ψ ′
1 give, upon measurement, the

same steering in subsystem 2 if and only if

(i) the range projections are positively collinear

Q1ψ1 = cQ1ψ
′
1, c > 0, (8a)

or equivalently
(ii) if they determine by projection the same state vector in R(ρ1):

Q1ψ1/‖Q1ψ1‖ = Q1ψ
′
1/‖Q1ψ

′
1‖. (8b)

(B) Of all elementary events Pψ1 in H1 that give one and the same state vector in H2

by steering the largest probability of occurrence has the one that lies entirely in R(ρ1), or,
equivalently, the component of which in the null space of Aa is zero.

Proof. (A) Sufficiency. Let (8a) be valid. Since ρ1 = ρ1Q1, and ρ
1/2
1 = ρ

1/2
1 Q1,

(6a) implies Aa = AaQ1. Hence, applying Aa to (8a), one obtains Aaψ1 = cAaψ
′
1, and

‖Aaψ1‖ = c‖Aaψ
′
1‖. Finally,

Aaψ1/‖Aaψ1‖ = Aaψ
′
1/‖Aaψ

′
1‖. (9)

Necessity. If relation (9) is valid, then

Aa(ψ1/‖Aaψ1‖ − ψ ′
1/‖Aaψ

′
1‖) = 0 = Q1(ψ1/‖Aaψ1‖ − ψ ′

1/‖Aaψ
′
1‖)

(Aa and Q1 have the same null space). Finally,

Q1ψ1 = (‖Aaψ1‖/‖Aaψ
′
1‖)Q1ψ

′
1.

Thus, (8a) is satisfied.
Clearly, (8b) implies (8a). Conversely, (8a) gives ‖Q1ψ1‖ = c‖Q1ψ

′
1‖. Relation (8b)

ensues from (8a) and this relation.
(B) Relation (5b) implies

p = ‖Aaψ1‖2 = ‖AaQ1ψ1‖2 = (‖Q1ψ1‖2)[‖Aa(Q1ψ1/‖Q1ψ1‖)‖2]. (10)

All vectors specified in (8b) have the second factor after the last equality in (10) in common.
Therefore, the probability is largest when the first factor (after the last equality in (10)) is
largest, i.e., when it is one. �

5
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7. The fine structure of infinite-dimensional ranges

In this section, we make a deviation from our two-particle study to one Hilbert space and a
given density operator with an infinite-dimensional range in it.

Remark 2. Let ρ be a density operator with an infinite-dimensional range. Writing ‘⊕’ for
the union of disjoint sets, and ‘�’ when set-theoretically subtracting a subset from a larger
set, the proper-inclusion chain (7) implies

R(ρ) = R(ρ) ⊕ (R(ρ1/2) � R(ρ)) ⊕ (R(ρ) � R(ρ1/2)). (11)

Lemma 1. Let {ψk : ∀k} be a complete orthonormal eigenbasis of ρ in R(ρ), and let {rk : ∀ k}
be the corresponding positive spectrum of ρ (with possible repetitions of equal eigenvalues in
general). Let, further, R(ρ) � ψ = ∑

k akψk , with ∀k : ak ∈ C be an arbitrary element,
i.e.,

∑
k |ak|2 < ∞. Then

ψ ∈ R(ρ) ⇔
∑

k

∣∣r−1
k ak

∣∣2
< ∞, (12)

and

ψ ∈ R(ρ1/2) ⇔
∑

k

∣∣r−1/2
k ak

∣∣2
< ∞. (13)

Proof. {⇐ in(12)}. Assuming the validity of the second expression in (12), we define
φ ≡ ∑

k r−1
k akψk . Then one has ψ = ρφ, i.e., the first expression in (12) holds true.

{⇒ in(12)}. If ψ belongs to the range, there exists φ = ∑
k bkψk,

∑
k |bk|2 < ∞ and

ρφ = ψ . Since ∀ k : ak = rkbk , one has ∀ k :
∑

k

∣∣r−1
k ak

∣∣2
< ∞.

Equivalence (13) is proved analogously.
�

Lemma 2. The square root ρ1/2 of any density operator ρ with an infinite-dimensional range
maps in a one-to-one way R(ρ) onto R(ρ1/2), and by this it maps R(ρ1/2) onto R(ρ), and
{R(ρ) � R(ρ1/2)} onto {R(ρ1/2) � R(ρ)}, i.e., (14a)–(14c) is valid

R(ρ1/2) ⊕ {R(ρ) � R(ρ1/2)} = R(ρ) (14a)

↓ ↓ (14b)

R(ρ) ⊕ {R(ρ1/2) � R(ρ)} = R(ρ1/2). (14c)

Proof. That ρ1/2 maps R(ρ) into R(ρ1/2) is obvious from (6b). To prove that it is an ‘onto’
map, let ψ = ∑

k akψ1 (cf lemma 1) be an arbitrary element of the latter range. Then,
according to (13), also φ ≡ ∑

k r
−1/2
k akψk is an element of R(ρ). Applying ρ1/2 to it, we

obtain ψ . Assuming ab contrario that φ, φ′ ∈ R(ρ), φ �= φ′ and ρ1/2φ = ρ1/2φ′, one arrives
at ρ1/2(φ − φ′) = 0, i.e., a non-zero element is taken into zero. This is not possible because
ρ1/2 has the same null space as ρ, and it is the orthocomplement of R(ρ).

The first arrow in (14b), i.e., the map ρ1/2 that it denotes, is obvious in the ‘into’ sense
because ρ1/2ρ1/2 = ρ. Let ψ = ∑

k akψk be an arbitrary element of R(ρ). Then, according

to (12),
∑

k

∣∣r−1
k ak

∣∣2
< ∞. Then also

∑
k

∣∣r−1/2
k ak

∣∣2
< ∞ (compare the first inclusion in (7)

with (12) and (13)). Hence, we can define φ ≡ ∑
k r

−1/2
k ak , and we have ρ1/2φ = ψ . Thus,

we are dealing with an ‘onto’ map.
Finally, the last claim is an immediate consequence of the preceding two, as easily

seen. �
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8. Back to steering

It was shown in previous work [11] that the correlation operator does not just map R(ρ1)

onto R(ρ2). It takes by similarity transformation the positive part of the one reduced density
operator into that of the other

ρ2 = Uaρ1U
−1
a Q2, (15)

where Q2 is the range projector of ρ2.

Lemma 3. The correlation operator preserves decomposition (11):

UaR(ρ1) = R(ρ2), (16a)

UaR(ρ1) = R(ρ2), (16b)

Ua

(
R

(
ρ

1/2
1

) � R(ρ1)
) = (

R
(
ρ

1/2
2

) � R(ρ2)
)
, (16c)

Ua

(
R(ρ1) � R

(
ρ

1/2
1

)) = (
R(ρ2) � R

(
ρ

1/2
2

))
. (16d)

Proof. In lemma 1 we made the choice ∀ k : ρ1ψ
k
1 = rkψ

k
1 . Applying the correlation

operator, one obtains ∀ k :
(
Uaρ1U

−1
a

)(
Uaψ

k
1

) = rk

(
Uaψ

k
1

)
. Defining ∀ k : ψk

2 ≡ Uaψ
k
1 ,

one can, account of (15), write ∀ k : ρ2ψ
k
2 = rkψ

k
2 . Since R(ρi) i = 1, 2 is the linear

manifold spanned by the eigenvectors
{
ψk

i : ∀ k
}
, i = 1, 2, (16b) is valid.

According to (13),
∑

k

∣∣r−1/2
k ak

∣∣2
< ∞ is satisfied for every element ψ1 = ∑

k akψ
k
1

that belongs to R
(
ρ

1/2
1

)
. Applying Ua , one has (Uaψ1) = ∑

k a∗
kψ

k
2 , and

∑
k

∣∣r−1/2
k a∗

k

∣∣2 =∑
k

∣∣r−1/2
k ak

∣∣2
< ∞. Thus, UaR

(
ρ

1/2
1

) = R
(
ρ

1/2
2

)
. The rest in the claim is evident. �

Theorem 4. The antilinear representative Aa of a given bipartite state vector �12 (cf (2a,b))
that implies reduced density operators with infinite-dimensional ranges maps in a one-to-one
way R(ρ1) onto R

(
ρ

1/2
2

)
, and by this it maps R

(
ρ

1/2
1

)
onto R(ρ2), and

{
R(ρ1) � R

(
ρ

1/2
1

)}
onto

{
R

(
ρ

1/2
2

) � R(ρ2)
}
. This is made more transparent by the following relations:

R
(
ρ

1/2
1

) ⊕ {
R(ρ1) � R

(
ρ

1/2
1

)} = R(ρ1) (17a)

↓ ↓ (17b)

R(ρ2) ⊕ {
R

(
ρ

1/2
2

) � R(ρ2)
} = R

(
ρ

1/2
2

)
. (17c)

Proof. The claim of the theorem is evident having in mind the polar factorization (6b) of Aa ,
lemma 3 and lemma 2 in application to ρ2. �

9. Conclusion

In the formalism the map Aa that represents antilinearly any given bipartite state vector �12

actually performs the Schrödinger steering. If the composite-system state vector implies
infinite-dimensional reduced density operators ρi, i = 1, 2, then the mapping has a fine
structure:

(i) If the measurement of ψ1 is that of an eigenvector of ρ1 corresponding to a positive
eigenvalue, then actually the corresponding eigenvector ψ2 = Uaψ1 is distantly measured.
This simplest case was extensively studied in [11, 12] in the non-selective version of
measurement, when all results are taken into account in contrast to Schrödinger’s steering,
in which the selective version of measurement is considered with only one result—that
of obtaining 1 for Pψ1 .

7
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(ii) All other elements of R(ρ2) can be obtained by steering that results from direct
measurement of a vector ψ1 from R

(
ρ

1/2
1

)
. This case was studied in detail, again in

the non-selective version of measurement, in [7].
(iii) Finally, the elements of

(
R

(
ρ

1/2
2

) � R(ρ2)
)

can be reached by steering when direct

measurement of vectors from
(
R(ρ1) � R

(
ρ

1/2
1

))
is performed.

Besides, the vectors from the range of ρ1 give, by selective measurement, the largest
probability. Hence, the null space of ρ1 is best discarded in steering.

The paradoxical physical meaning of distant steering is not discussed in this
paper. Quantum-mechanical insight into the nice EPR-type entanglement experiments of
Scully et al [13, 14] (a thought and a real experiment) gained by the present author recently
[15, 16] has led to the conclusion that distant correlations are paradoxical only in the Einsteinian
absolute-property interpretation of quantum mechanics . If one takes resort to the alternative,
the relative-property interpretation, a kind of Everettian approach, then nothing is paradoxical.
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